
Software Safety Assurance – What Is Sufficient?

R.D. Hawkins, T.P. Kelly

Department of Computer Science,
The University of York, York, YO10 5DD

UK

Keywords: Software, Assurance, Arguments, Patterns.

Abstract

It is possible to construct a safety argument for the software
aspects of a system in order to demonstrate that the software
is acceptably safe to operate. In order to be compelling, it is
necessary to justify that the arguments and evidence presented
for the software provide sufficient safety assurance. In this
paper we consider how assurance may be explicitly
considered when developing a software safety argument. We
propose a framework for making and justifying decisions
about the arguments and evidence required to assure the
safety of the software.

1 Introduction

A safety case can be used to demonstrate that a system is
acceptably safe to operate. A safety case should contain a
structured argument demonstrating how safety claims are
supported by a body of evidence. For systems containing
software, a safety argument must consider claims that the
contribution of the software to the safety of the system is
acceptable.

In order to assure the safety of software it is common to adopt
a highly prescriptive approach, where safety is demonstrated
by showing compliance with the requirements set out as a
prescribed process in a standard. Such requirements are
generally varied to reflect the criticality or importance of the
safety function being performed by the software. This
approach is the basis of commonly adopted standards such as
IEC 61508 [3] and DO-178B [8].

A software safety argument makes it possible to provide an
explicit demonstration that the evidence generated supports
the specific safety objectives of the system. Where a
prescribed process has been followed, the software safety
argument may therefore highlight requirements for additional
evidence.

Constructing compelling software safety arguments remains,
however, a major challenge. In particular, justifying the
sufficiency of the arguments and evidence provided for the
software is difficult. In this paper we describe an approach
which begins to provide a framework for making and
justifying decisions about the arguments and evidence

required to assure the safety of the software. We begin by
considering the challenges of software safety assurance.

2 Software Safety Assurance

It is inevitable for the software aspects of a system that there
will exist inherent uncertainties that affect the assurance with
which it is possible to demonstrate the safety of the software.
The reason for this is that the amount of information
potentially relevant to demonstrating the safety of the system
is vast. This may be information relating to the software itself,
or to the system within which the software operates. There
will also be information relating to the environment and
operation of the system, all of which potentially has a role in
demonstrating that the software is acceptably safe. It is simply
not possible to have complete knowledge about the safety of
the software.

This leads to uncertainty, for example through having to make
assumptions or accept known limitations in the integrity of
the evidence generated, or the strength of support that
evidence provides. For this reason it is not normally possible
to demonstrate with absolute certainty that the claims made in
a software safety argument are true. For a software safety
argument to be compelling it must instead establish sufficient
confidence in the truth of the safety claims that are made. The
assurance of a claim is the justified confidence in that claim.

It is worth noting at this point that such uncertainties in
demonstrating the safety of the software are always present,
but are often, such as when following a highly prescriptive
approach, left implicit. The construction of a software safety
argument facilitates the explicit identification of such
uncertainties, making them easier to reason about, and
therefore justify. Reasoning explicitly about the extent and
impact of the uncertainties in a safety argument aids in the
successful acceptance of the argument as part of a safety case.
Any identified residual uncertainty in demonstrating the
safety of the software (such as those discussed above) can be
considered to be an assurance deficit. Assurance deficits can
reduce the assurance which is achieved. It is possible to use
the construction of a software safety argument to identify how
assurance deficits may arise. This is achieved by
systematically considering how uncertainty may be
introduced at each step in the construction of the argument.
We discuss this further in Section 3

By identifying where potential assurance deficits may arise,
this approach can be used to inform the decisions that are
made on how to construct the argument. We consider how to
structure a software safety argument in Section 4

In order to produce a sufficiently compelling software safety
argument, all identified assurance deficits must be
satisfactorily addressed, or justification must be provided that
the impact of the assurance deficit on the claimed safety of
the system is acceptable. Section 5 discusses how such
justifications might be made.

3 Considering Assurance During Argument
Construction

There exists a widely used method for constructing and
defining safety arguments, often referred to as the ‘six-step
method’ [4]. The steps of the method are:

1. Identify goals (claims) to be supported
2. Define basis on which goals (claims) are stated
3. Identify strategy (argument approach) to support

goals (claims)
4. Define basis on which the strategy (argument

approach) is stated
5. Elaborate the strategy (argument)
6. Identify basic solution (evidence)

Steps 1 to 5 are applied cyclically to create the hierarchical
structure of claims and sub-claims of the argument. This
continues until it is possible to identify evidence to support
the claim. At this point step 6 is applied, and development of
that leg of the argument stops.

 Although this six-step method has been used successfully to
develop many different safety arguments, this approach
doesn’t explicitly consider assurance. This means that the
sufficiency of the resulting argument may be difficult to
justify. For software safety arguments a more systematic
consideration of assurance is required.

As an argument is constructed, decisions are continually
being made about the best way in which to proceed.
Decisions are made about how goals are stated, the strategies
that are going to be adopted, the context and assumptions that
are going to be required, and the evidence it is necessary to
provide. Each of these decisions has an influence on what is,
and is not, addressed by the safety case. The things that are
not sufficiently addressed are referred to as assurance deficits.

To extend the existing six-step method to explicitly identify
assurance deficits, the potential ways in which assurance may
be lost at each of the steps in the method must be considered.
In order to achieve this a deviation-style analysis of each of
the six steps was performed. This considered the purpose of
each of the steps, and then considered the ways in which
uncertainty may be introduced into the argument at that step.
This deviation analysis was based upon the widely used
HAZOP technique which was originally developed as a way
of analysing process plants [1] but has since been developed

for use in other applications including the analysis of software
[8]. HAZOP uses a set of guidewords to prompt the
identification of deviations from normal behaviour. The
standard HAZOP guidewords are: no or none, more, less, as
well as, part of, other than, reverse.

The HAZOP guidewords were applied and interpreted for
each step in the six-step argument development method to
consider the assurance deficits that may arise. An example
taken from a summary of the results of the analysis is
provided in Table 1. By helping to identify where assurance
deficits may arise, this approach can be used to inform the
decisions that are made on how to construct an argument.

On its own however, such guidance is insufficient, as it
provides no specific guidance on the argument structure or
nature of the claims required for a software safety argument.
This is considered in the next section.

4 Software Safety Argument Patterns

Software safety argument patterns provide a means of
capturing good practice in software safety arguments. Patterns
are widely used within software engineering as a way of
abstracting the fundamental design strategies from the details
of particular designs. The use of patterns as a way of
documenting and reusing successful safety argument
structures was pioneered by Kelly in [4]. As with software
design, software safety argument patterns can be used to
abstract fundamental argument approaches from the details of
a particular argument. It is then possible to use the patterns to
create specific arguments by instantiating the patterns in a
manner appropriate to the application.

There exist a number of examples of safety argument
patterns. Kelly developed an example safety case pattern
catalogue in [4] which provided a number of generic solutions
identified from existing safety cases. Although providing a
number of useful generic argument strategies, the author
acknowledges that this catalogue does not provide a complete
set of patterns for developing a safety argument; it merely
represents a cross-section of useful solutions for unconnected
parts of arguments. Kelly’s pattern catalogue does not deal
specifically with any software aspects of the system. The
safety argument pattern approach was further developed by
Weaver [9], who specifically developed a safety pattern
catalogue for software. There were two crucial differences
with this catalogue. Firstly, the set of patterns in the catalogue
were specifically designed to connect together in order to
form a coherent argument. Secondly, the argument patterns
were developed specifically to deal with the software aspects
of the system.

There are a number of weaknesses that have been identified
with Weaver’s pattern catalogue. Firstly, the argument
patterns take a narrow view, focusing on the mitigation of
failure modes in the design. Secondly, the patterns present an
essentially "one size fits all" approach, with little guidance on
alternative strategies, or how the most appropriate option is

determined. A software safety pattern catalogue has also been
developed by Ye [10], specifically to consider arguments
about the safety of systems including COTS software
products. Ye’s patterns provide some interesting
developments to Weaver’s, including patterns for arguing that
the evidence is adequate for the assurance level of the claim it
is supporting. Although we do not necessarily advocate the
use of discrete levels of assurance, the patterns are useful as
they support the approach of arguing over both the
trustworthiness of the evidence and the extent to which that
evidence supports the truth of the claim.

4.1 A Software Safety Argument Pattern Catalogue

We have developed a catalogue of software safety arguments
which builds upon the existing work, and also takes account
of current good practice for software safety, including from
existing standards. The software safety argument pattern
catalogue contains a number of patterns which may be used
together in order to construct a software safety argument for
the system under consideration. The following argument
patterns are currently provided:

1. High-level software safety argument pattern –
This pattern provides the high-level structure for a
generic software safety argument. The pattern can be
used to create the high level structure of a software
safety argument either as a stand alone argument or
as part of a broader system safety argument.

2. Software contribution safety argument pattern -
This pattern provides the generic structure for an
argument that the contributions made by software to
system hazards are acceptably managed. This pattern
is based upon a generic ‘tiered’ development model
in order to make it generally applicable to a broad
range of development processes.

3. Software Safety Requirements identification
pattern - This pattern provides the generic structure
for an argument that software safety requirements
(SSRs) are adequately captured at all levels of
software development.

4. Hazardous contribution software safety argument
pattern – This pattern provides the generic structure
for an argument that the identified SSRs at each
level of software safety development adequately
address all identified potential hazardous failures.

5. Argument justification software safety argument
pattern - This pattern provides the generic structure
for an argument that the software safety argument
presented is sufficient.

The argument patterns are captured using the pattern
extensions to the Goal Structuring Notation (GSN), described
in [4]. When instantiated for the target system, these patterns
link together to form a single software safety argument for the
software. Here we provide a brief overview of the patterns,
full details of the patterns can be viewed at [11]. Key to these
arguments is establishing the satisfaction of software safety
requirements (SSRs) and the absence of hazardous errors
through tiers of development of the software. The number of

tiers of development may be different for different software
systems, but the general safety considerations at each tier are
unchanged.

At the heart of the pattern catalogue is the software
contribution safety argument pattern shown in Figure 1. This
pattern provides the structure for arguments that the
contributions made by software to system hazards are
acceptably managed. It is at this point in the overall software
argument that the software design is considered in detail. The
main ‘spine’ of the argument argues that, at each tier, the
SSRs imposed upon the design are met. As can be seen in
Figure 1, this can be demonstrated in two ways. Firstly, at
each tier it is possible to provide evidence at that tier that the
SSRs are satisfied. Secondly, the SSRs may be traced through
to the next tier of design. This ensures that traceability is
established up through the tiers of development to the system
hazards to which the software may contribute.

However, such an argument on its own would be insufficient.
In Figure 1 it can be seen that two other software safety
argument patterns from the catalogue (SSR identification and
hazardous contribution) support this main thread of argument.
These patterns consider that it is possible, at any tier of
development, to introduce errors into the software as
decomposition of the design occurs. The SSR identification
pattern argues that, at each tier, the SSRs from the previous
tier have been adequately allocated, decomposed, apportioned
and interpreted. The pattern provides two ways in which it
can be argued that this is achieved. Firstly, it can be argued
that design decisions that are taken will help to mitigate
SSRs. For example, a decision may be taken to have
redundant components in the design in order to help satisfy an
SSR relating to the availability of an item of data. Secondly, it
may be necessary, taking into account the design at that tier,
to specify new or additional SSRs upon the components in the
design.

The hazardous contribution pattern considers possible
hazardous failures that may manifest themselves at each tier
of software development. There are two aspects to this
argument. Firstly the argument must consider at each tier the
possible failure behaviour of the software. An argument is
provided that such potentially hazardous behaviour is
identified at each tier, and that appropriate SSRs have been
defined that are sufficient to address them. There are various
techniques available for identifying deviations from intended
behaviour in software designs (such as Software HAZOP [7]).
The particular technique which is most appropriate to use will
depend upon the tier being considered, and also upon the
nature of the software design itself. Secondly the argument
must also consider the possibility that hazardous errors are
introduced by the design process adopted at that tier. It is
necessary to recognise in the argument that the design process
at any tier may be flawed. Although this aspect of the
argument is principally concerned with those errors in the
design which may lead to hazardous behaviour, the argument
is likely to have to involve thinking more generally about how
errors are removed from the design. This might include

consideration of the integrity of models generated, or the
robustness of languages used to specify the software.

A primary consideration during the development of these
patterns has been flexibility and the elimination of system-
specific concerns and terminology. Consequently, these
patterns can be instantiated for a wide range of systems and
under a variety of circumstances. It is crucial to make the
correct decisions when instantiating these patterns for a
particular system, in order that the resulting argument be
considered sufficiently compelling. Making incorrect
instantiation decisions when constructing the argument can
result in assurance deficits. The argument development
approach discussed in section 3 should always therefore be
used when instantiating the patterns for a particular system to
ensure that assurance is considered throughout instantiation.
To be compelling it is necessary to be able to justify that the
instantiation decisions taken result in a sufficiently
compelling argument for the system under consideration
(such as why particular claims are chosen whilst others are
not required). Guidance for justifying such decisions is
provided in the next section.

5 Justifying Assurance Sufficiency

The discussions in sections 3 and 4 illustrated how assurance
deficits may be systematically identified throughout the
construction of a software safety argument. The existence of
identified assurance deficits raises questions concerning the
sufficiency of the argument. Therefore where an assurance
deficit is identified, it is necessary to demonstrate that the
deficit is either acceptable, or addressed such that it becomes
acceptable (for example through the generation of additional
relevant information). There will typically be a cost
associated with obtaining the information to address an
assurance deficit. In theory it would be possible to spend
disproportionate sums of money generating sufficient
information to address all assurance deficits. However in
practice the benefit gained from addressing each assurance
deficit will not necessarily justify the cost involved in
generating the additional information. In order to assess if the
required level of expenditure is warranted, the impact of that
assurance deficit on the claimed risk position of the argument
must be determined. Firstly we therefore discuss how the
impact of an assurance deficit can be assessed.

5.1 Assurance Deficit Impact

The software safety argument establishes a claimed position
on the hazard identification, risk estimation, and risk
management of the software contribution to system hazards.
Since assurance deficits have the potential to undermine the
sufficiency of the argument, the impact of any assurance
deficit should be assessed in terms of the impact it may have
on this claimed position. Is the assurance deficit significant
enough that that position can no longer be supported? For
example, an assurance deficit may be sufficient to challenge
the completeness of hazard identification, or may be
sufficient to challenge the estimated residual risk. It may also

be possible, for example, that an assurance deficit challenges
a claim that the software contribution to system hazards are
acceptably managed.

One of the challenges of determining the impact of an
assurance deficit is that the activities undertaken to address an
assurance deficit (such as generating additional evidence from
testing) can only increase confidence in a safety claim, and do
not directly reduce risk. In establishing the overall claimed
position of the software safety argument, some of the
argument claims can, however, be recognised as being more
important than others. For example, claims regarding the
behaviour of an architectural component (such as a voter),
which carries a greater responsibility for risk reduction than
other components, are more important to the overall software
safety argument. Therefore claims relating to those
components would require a greater degree of assurance
(more confidence must be established). Safety standards such
as [5] and [3] describe how safety integrity requirements may
be defined for software functions or components. These
safety integrity requirements define the integrity or reliability
required in order to support the safety of the system. Where
safety integrity requirements have been defined, they can be
used as a way of determining the importance of the software
safety argument claim to which they relate.

The impact of an assurance deficit should first be determined
by considering the importance of the truth of the related claim
or claims in establishing the claimed risk position of the
safety case (when considered in the overall context of the
system). Secondly, the relative importance of the assurance
deficit to establishing the truth of that claim must also be
considered. One way to approach this is to consider those
aspects of the claim that are still assured in the presence of the
assurance deficit (due to other evidence or information), and
those that are not. Knowing the importance of the truth of the
claim in establishing the claimed risk position, and the
relative importance of the assurance deficit to establishing the
truth of that claim, it then becomes possible to reason about
the overall impact of the assurance deficit.

In a similar manner to the categorisation of risks within the
ALARP approach, the impact of the identified assurance
deficits may be usefully classified into three categories. An
“intolerable” deficit could be one whose potential impact on
the claimed risk position is too high to be justified under any
circumstances. At the other extreme, some assurance deficits
may be categorised as “broadly acceptable” if the impact of
the assurance deficit on the claimed risk position is
considered to be negligible i.e. the “missing information” has
a negligible impact on the overall confidence in the safety
argument. In such cases no additional effort to address the
assurance deficit need be sought. Finally, a potentially
“tolerable” assurance deficit is one whose impact is
determined to be too high to be considered negligible, but
which is also not necessarily considered to be intolerable. For
a potentially “tolerable” assurance deficit it may be
considered acceptable only if the cost of taking measures to
address the assurance deficit are out of proportion with the

impact of not doing so. The greater the impact of an assurance
deficit, the more money system developers may be expected
to spend in addressing that deficit.

Note that the impact of an assurance deficit can only be
determined on a case-by-case basis for a specific argument
relating to a particular system. The same type of assurance
deficit (such as a particular assumption) whose impact is
categorised as broadly acceptable when present in the
software safety argument for one system, may be considered
intolerable when present in the argument for a different
system. This is because the impact of an assurance deficit
considers its impact in terms of the overall safety of the
system. It is for this reason that particular argument
approaches (such as the patterns discussed in section 4)
cannot be stated as sufficient for particular claims, but must
be adapted on each use to be appropriate for the particular
application.

5.2 Addressing Assurance Deficits

Addressing an assurance deficit requires ‘buying’ more
information or knowledge about the system relevant to the
safety claims being made. There will typically be a cost
associated with obtaining this information. For those
assurance deficits categorised as tolerable, in a manner
similar to that adopted for an ALARP assessment process
(such as that described in [6]), the value of the information in
building confidence in the safety case must be considered
when deciding whether to spend that money. In theory it is
possible to do a formal cost-benefit analysis based on a
quantitative assessment of the costs associated with the
available options for addressing the assurance deficit, and the
costs associated with the potential impact on the claimed risk
position (such as the necessity to provide additional system
level mitigations). In many cases however, a qualitative
consideration of these issues will suffice. It should be noted
that even for ALARP assessments of conventional systems
qualitative arguments will often be presented before turning
to a quantitative first principles argument [2]. In all cases an
explicit justification should be provided as to why the residual
assurance deficit is considered acceptable and, wherever
appropriate, an argument should be used to provide this
justification. Section 4 described how we have provided an
argument pattern for constructing an argument to justify that
the residual assurance deficits are acceptable.

The approach described above, although similar to ALARP,
rather than considering the necessity of adopting measures to
directly decrease risk, instead considers measures intended to
increase the confidence that is achieved. As such the
framework could be considered to help establish a claimed
risk position in the software safety case that is ACARP (As
Confident As Reasonably Practicable).

6 Conclusions

Constructing software safety arguments for software can
bring many benefits − particularly the ability to explicitly

reason about how the evidence generated demonstrates that
the software is sufficiently safe. The biggest challenge in
constructing a compelling software safety argument is making
a judgement as to what is sufficient in order to gain an
acceptable level of assurance.

In this paper we have provided a framework for making and
justifying decisions about the arguments and evidence
required to demonstrate sufficient assurance in the software.
This framework includes an argument development approach
that systematically considers assurance, utilises a catalogue of
software safety argument patterns, and a structured approach
for justifying the acceptability of the resulting argument. By
using these elements together, we believe it becomes easier to
demonstrate that sufficient software safety assurance is
achieved.

Acknowledgements

The authors would like to thank the U.K. Ministry of Defence
for their support and funding. This work is undertaken as part
of the research activity within the Software Systems
Engineering Initiative (SSEI), www.ssei.org.uk.

References

[1] CISHEC. “A Guide to Hazard and Operability Studies.”,
The Chemical Industry Safety and Health Council of the
Chemical Industries Association Ltd., (1977).

[2] HSE. “The Tolerability of Risk from Nuclear Power
Stations”, Health and Safety Executive, (1988).

[3] IEC. “61508 - Functional Safety of Electrical /
Electronic / Programmable Electronic Safety-Related
Systems”, (1998).

[4] T.P. Kelly. “Arguing Safety - A Systematic Approach to
Managing Safety Cases.” PhD thesis, Department of
Computer Science, The University of York, (1998).

 [5] MoD. “Defence Standard 00-56 Issue 4: Safety
Management Requirements for Defence Systems.”,
HMSO, (2007).

 [6] Railtrack. “Engineering Safety Management – Yellow
Book 3”, Railtrack Plc., volumes 1 and 2, (2000).

[7] F. Redmill, M Chudleigh, J. Catmur. “System Safety:
HAZOP and Software HAZOP”. Wiley, (1999).

[8] RTCA. “DO-178B - Software Considerations in
Airborne Systems and Equipment Certification”, (1992).

[9] R.A. Weaver. “The safety of Software - Constructing
and Assuring Arguments.”, PhD thesis, Department of
Computer Science, The University of York, (2003).

[10] Fan Ye. “Justifying the Use of COTS Components
within Safety Critical Applications.”, PhD thesis,
Department of Computer Science, The University of
York, (2005).

[11] http://www.ssei.org.uk

Step Purpose Assurance impact
1. Identify
goals to be
supported

To clearly and
unambiguously
state the goals to
be supported.

More - If in stating the goal,
an attempt is made to claim
more than it is actually
possible to support with the
available evidence, then the
assurance that can be
achieved in that goal will
inevitably be low.

Less - The stated goal may
claim less than is actually
required to support the
argument. Although in this
case it may be easier to
achieve higher confidence in
the stated goal, this
confidence will not result in
the expected assurance in the
parent goal, since the claim is
insufficient to support the
conclusion.

As Well As - A
strategy or solution
may be erroneously
included in the
claim. This can
inadvertently
constrain potential
options for
addressing assurance
deficits.

Other Than - The
claim made may
not actually be that
in which assurance
is required.
Assurance may be
lost through
failing to correctly
capture the true
intent of the claim.

2. Define
basis on
which
goals are
stated

To clarify the
scope of the
claim, to provide
definitions of
terms used, to
interpret the
meaning of
concepts.

None - Any claim is only true
or false over a particular
scope. If the scope of the
claim is unclear, due to lack
of context, then the level of
truth or falsity of the claim
becomes more difficult to
determine. This increases the
uncertainty associated with
the assurance in that claim,
and therefore makes it more
difficult to determine the
assurance.

More - The scope of the
claim as defined by the
context may be too narrow.
The result of this is that
although a certain level of
assurance may be achieved
over the scope defined by the
context, the narrowness of
the scope limits that in which
confidence is achieved.

Less - The scope of
the claim is too
loosely defined. The
effect of this would
be similar to having
no context at all, in
that it leads to
uncertainty, and a
corresponding
reduction in
assurance.

Table 1: An extract from the argument development assurance analysis summary table.

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
managed at {tier n}

Strat: sw
contribution

Argument over SSRs
identified for {tier n}

Goal: SSRnAddn

{SSRn} addressed
through design at {tier n}

Con: tierNdesign

{{tier n} design}

number of SSRs at {tier n}

Goal: SSRnSat

{SSRn} demonstrably
satisfied through evidence
provided at {tier n}

At least 1 of 2

Goal: SSRnAddn+1

{SSRn} addressed through
design at {tier n+1}

n++

Con: SSRsN

{SSRs identified
for {tier n}}

Goal: SSRidentify

SSRs from {tier n-1} have been
adequately allocated, decomposed,
apportioned and interpreted at {tier n}

SSRidentify

Goal: hazCont

Potential hazradous failures at
{tier n} are acceptably managed

hazCont Hazardous Contribution Pattern
SSR Identification pattern

Figure 1: An example software safety argument pattern.

